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Generalized Boolean quasirings (GBQRs) are extensions of partial algebras that
are in one-to-one correspondence to bounded lattices with an involutory
antiautomorphism. This correspondence generalizes the bijection between
Boolean rings and Boolean algebras and provides for a large variety of presumptive
quantum logics (including logics which can be defined by means of Mackey’s
probability function). It is shown how properties of the corresponding lattices
are reflected in GBQRs and what the implications are of the associativity of the
1-operation of GBQRs, which can be interpreted as some kind of an “exclusive
or”-operation. We prove that under very weak conditions, which, however, seem
to be essential for experimental verifications, the associativity of 1 implies the
classicality of the considered quantum mechanical system.

1. INTRODUCTION

Generalized Boolean quasirings (GBQRs) and partial algebras inherent
to GBQRs, so-called pGBQRs, have been introduced and studied by the
present authors in refs. 4–7. Similar concepts (yet somewhat more specialized)
have been presented independently in refs. 2 and 8. The main purpose of
our work was to provide a general framework for developing axiomatic
quantum mechanics. GBQRs, which are generalizations of Boolean rings,
turned out to be well suited to serve as quantum logics. Since GBQRs can
be defined by means of pGBQRs, which are in one-to-one correspondence
with bounded lattices with an involutory antiautomorphism, the question
arises how lattice properties are reflected in pGBQRs and GBQRs and what
implications properties of GBQRs have for the underlying lattices. In the
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following we will give some answers to these questions and we will interpret
our results from the quantum-logical point of view.

First, let us recall the definitions of GBQRs and pGBQRs and give a
description of their connections to lattices [6, 7].

Definition 1.1. An algebra (R, 1, ?) of type (2, 2) (with two binary
operations 1 and ?) is called a generalized Boolean quasiring (GBQR) if
there are two elements 0, 1 P R such that, for all x, y, z P R, the following
laws hold:

(1) x 1 y 5 y 1 x
(2) 0 1 x 5 x
(3) (xy)z 5 x( yz)
(4) xy 5 yx
(5) xx 5 x
(6) x0 5 0
(7) x1 5 x
(8) 1 1 (1 1 xy)(1 1 x) 5 x

Omitting law (1), we may consider 1 as a partial binary operation %
on R with domain {0, 1} 3 R. This way we obtain a partial algebra (R, %,
?) of type (2, 2) (with the partial binary operation %, and the total binary
operation ?), which we will call a partial generalized Boolean quasiring—in
short, pGBQR.

If we define in a pGBQR (R, %, ?)

x ∨ y :5 1 % (1 % x)(1 % y)

x ∧ y :5 xy

x* :5 1 % x

for all x, y P R, then L(R) :5 (R, ∨, ∧, *, 0, 1) is a bounded lattice with an
involutory antiautomorhism. Conversely, if we have a bounded lattice (L, ∨,
∧, *, 0, 1) with an involutory antiautomorphism * and we define

0 % x :5 x

1 % x :5 x*

xy :5 x ∧ y

for all x, y P L, then we obtain a pGBQR R(L) :5 (L, %, ?). The above
correspondences L and R establish a bijection between pGBQRs and bounded
lattices with an involutory antiautomorphism. Further, every pGBQR (R, %,
?) can be extended to a GBQR by putting 0 1 x 5 x 1 0 :5 0 % x and 1 1
x 5 x 1 1 :5 1 % x for any x P R and defining x 1 y 5 y 1 x P R
arbitrarily for all x, y P R \{0, 1}.
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In the following, if not specified differently, 1 will always refer to an
arbitrary extension of % to a commutative total operation and ∨, ∧, and *
will always mean the lattice operations on a given pGBQR or GBQR in
the above-defined way. Hence, we will be looking at a pGBQR or GBQR
simultanously as a ring-like structure and a lattice.

2. CHARACTERIZATION OF LATTICE PROPERTIES
WITHIN pGBQRs

The following two theorems hold for arbitrary GBQRs. However, the
conditions referring to GBQRs only involve the operations 1 and ? within
the underlying pGBQRs, so that the theorems in fact are characterizations
of pGBQRs.

For a GBQR (R, 1, ?), x # y means xy 5 x, and x is said to be orthogonal
to y (in symbols, x ' y) if x # y*, which is in turn equivalent to x* $ y.

Theorem 2.1. For a GBQR R and the corresponding lattice L(R), the
following hold:

(i) L(R) is an ortholattice iff x # y and x* ' y* together imply x(1 1
xy) 5 x(1 1 y).

(ii) L(R) is orthomodular iff x* ' y* implies x(1 1 xy) 5 x(1 1 y).
(iii) L(R) is a Boolean algebra iff x(1 1 xy) 5 x(1 1 y) for all x, y P R.

Proof. Let x, y, z P R.
(i) “⇒”: If L(R) is an ortholattice, x # y and x* ' y* imply y 5 1

because of x, x* # y. Therefore x(1 1 xy) 5 0 5 x(1 1 y).
“⇐”: Since x # 1 and x* ' 1* we have x ∧ x* 5 x(1 1 x1) 5 x(1 1

1) 5 0.
(ii) “⇒”: If L(R) is orthomodular, x* ' y* implies x(1 1 xy) 5 x ∧

(x* ∨ y*) 5 y* 5 x(1 1 y).
“⇐”: According to (i), L(R) is an ortholattice. If x # y, then x ' y*

and hence

y 5 (x*(1 1 y))* 5 (x*(1 1 x*y))* 5 x ∨ ( y ∧ x*)

(iii) “⇒”: If L(R) is a Boolean algebra,

x(1 1 xy) 5 x ∧ (x* ∨ y*) 5 (x ∧ x*) ∨ (x ∧ y*) 5 x ∧ y* 5 x(1 1 y)

“⇐”: According to (ii), L(R) is orthomodular. Now we have

x 5 1 1 (1 1 xy)(1 1 x) 5 1 1 (1 1 xy)(1 1 (1 1 xy)x)

5 1 1 (1 1 xy)(1 1 x(1 1 xy)) 5 1 1 (1 1 xy)(1 1 x(1 1 y))

5 (x ∧ y) ∨ (x ∧ y*)
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which shows that any two elements of L(R) commute, wherefrom we can
conclude [e.g., 1] that L(R) is a Boolean algebra. n

Remark 2.1. If L(R) is a Boolean algebra, R need not be a Boolean ring,
even if R has characteristic 2 (i.e., x 1 x 5 0 for all x P R). See the example
of the GBQR R illustrated in Fig. 1, for which we have assumed that a 1
b 5 a. If R were a Boolean ring, we would have to have a 1 b 5 a 1 a* 5 1.

Theorem 2.2. For a GBQR R and the corresponding lattice L(R), the
following hold:

(i) L(R) is modular iff x* ' y* and y ' xz* together imply x(1 1
yz) 5 x(1 1 y).

(ii) L(R) is distributive iff y ' xz* implies x(1 1 yz) 5 x(1 1 y).

Proof. Let x, y, z P R.
(i) “⇒”: If L(R) is modular, then x* ' y* and y ' xz* imply

x(1 1 yz) 5 x ∧ (z* ∨ y*) 5 (x ∧ z*) ∨ y* 5 y* 5 x(1 1 y)

“⇐”: Assume x # z. Then z* ' x ∨ ( y ∧ z), and because of x* ∧ ( y* ∨
z*) ' zy we obtain

(x ∨ y) ∧ z 5 z(1 1 (x* ∧ ( y* ∨ z*))y*)

5 z(1 1 (x* ∧ ( y* ∨ z*))) 5 x ∨ ( y ∧ z)

(ii) “⇒”: In case of a distributive lattice L(R), y ' xz* yields

x(1 1 yz) 5 x ∧ ( y* ∨ z*) 5 (x ∧ y*) ∨ (x ∧ z*) 5 x ∧ y* 5 x(1 1 y)

“⇐”: According to (i), L(R) is modular. Because of (x* ∨ z*) ∧ y* '
zx we therefore obtain

(x ∨ y) ∧ z 5 z(1 1 ((x* ∨ z*) ∧ y*)x*) 5 z(1 1 ((x* ∨ z*) ∧ y*))

5 ((x ∧ z) ∨ y) ∧ z 5 (x ∧ z) ∨ ( y ∧ z) n

3. CONSEQUENCES OF THE ASSOCIATIVITY OF 1 IN GBQRs

Because in general there are many possibilities to extend % to a total
operation, we start by formulating two moderate restrictions for the operation

Fig. 1.
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1 in an arbitrary GBQR (R, 1, ?) (which we will use separately as well
as together).

The first restriction (A1) is that x 1 y should be a polynomial over (R,
%, ?) in the two variables x, y and the (only) constant 1 (i.e., x 1 y should
be representable by an expression in x, y, 1, %, and ?) such that x 1 y
coincides with the symmetric difference in L(R) if L(R) is a Boolean algebra.

There are two such polynomials that represent the symmetric difference
in Boolean algebras:

x 11 y 5 1 % (1 % x(1 % y))(1 % (1 % x)y) 5 (x ∧ y*) ∨ (x* ∧ y)

x 12 y 5 (1 % (1 % x)(1 % y))(1 % xy) 5 (x ∨ y) ∧ (x* ∨ y*)

In general (R, 11, ?) and (R, 12, ?) are not Boolean rings unless L(R) is a
Boolean algebra. If L(R) is a Boolean algebra, 11 and 12 coincide, otherwise
x 11 y # x 12 y.

Our second assumption (A2) is that for an arbitrary GBQR (R, 1, ?)
and x, y P R

x 11 y # x 1 y # x 12 y

Assumption (A2) guarantees that if R has characteristic 2 and L(R) is a
distributive lattice, then L(R) is a Boolean algebra. This can be easily seen
by means of the following lemma, in which we mention several consequences
of (A2) which are useful for calculations in GBQRs.

Lemma 3.1. Assume (A2). Let a, b P L(R) and denote the set {a ∧ a*,
a, a*, a ∨ a*} by A. Then the following hold:

(i) a # b implies a 1 b 5 b 1 a 5 a* ∧ b; hence a 1 a 5 a ∧ a*
and (a 1 a) 1 a 5 a.

(ii) a ' b implies a 1 b 5 b 1 a 5 a ∨ b.
(iii) b # a, a* implies a 1 b 5 b 1 a 5 a.
(iv) a, a* # b implies a 1 b 5 b 1 a 5 a*.
(v) (A, 1) is isomorphic to the cyclic group Z1, to the cyclic group

Z2, or to the Kleinian 4-group, depending on which of the following
three conditions are fulfilled: (1) a 5 a*, (2) a Þ a* and a, a*
are comparable, and (3) a, a* are incomparable.

Proof. (i)–(iv) As one can see immediately, all statements hold for 11

and also for 12 if we replace 1 by 11 and 12, respectively. Because of
(A2) they are also true for 1.

(v) One can easily check that the operation table given by Table I is
valid for 11 as well as 12 and hence also for 1, from which claim (v) can
be derived by straightforward calculation. n
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Table I

a ∧ a* a a* a ∨ a*

a ∧ a* a ∧ a* a a* a ∨ a*
a a a ∧ a* a ∨ a* a*

a* a* a ∨ a* a ∧ a* a
a ∨ a* a ∨ a* a* a a ∧ a*

Now we assume that in addition to (A2), 1 is associative.

Lemma 3.2. If under the assumption (A2), 1 is associative, then for x,
y P R the following hold:

(i) (x 1 y)* 5 x* 1 y 5 x 1 y*.
(ii) x 1 y 5 x* 1 y*.
(iii) x 1 x 5 x 1 y 5 y 1 y implies x 5 y.
(iv) L(R) cannot have either of the lattices MO2 or MO2 3 21 illustrated

in Figs. 2 and 3 as sublattices if a 1 b 5 z holds in R.

Proof. (i) (x 1 y)* 5 1 1 (x 1 y) 5 (1 1 x) 1 y 5 x 1 (1 1 y).
(ii) x 1 y 5 (x*)* 1 y 5 x* 1 y*.
(iii) Because of Lemma 3.1(i), x 1 x 1 x 5 x. Therefore

x 5 x 1 (x 1 x) 5 x 1 ( y 1 y) 5 (x 1 y) 1 y 5 ( y 1 y) 1 y 5 y

(iv) If MO2 or MO2 3 21 were sublattices of L(R) with a 1 b 5 z,
then we would have a 1 a 5 a 1 b 5 b 1 b, wherefrom a 5 b follows
by (iii), a contradiction. n

For our further investigations we need the following.

Definition 3.1. Let L be a lattice with an involutory anitautomorphism
*. Then L is called *-modular (modular in respect to the involutory antiauto-
morphism *) if, for all x, y P L,

Fig. 2.
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Fig. 3.

x # y implies (x ∨ x*) ∧ y 5 x ∨ (x* ∧ y) (SM)

If (SM) holds, then by the duality principle we also have

x # y implies (x ∨ y*) ∧ y 5 x ∨ (y* ∧ y)

which is then equivalent to (SM).
Moreover, we can give the following characterization:

Lemma 3.3. A lattice L with an involutory antiautomorphism * is *-
modular iff for x, y, z P L

x # y # z and y # x ∨ x* together imply (x ∨ y*) ∧ z

5 x ∨ ( y* ∧ z) (SM)

Proof. Assume that L is *-modular. If x # y # z and y # x ∨ x*, then
( y ∨ y*) ∧ z $ (x ∨ y*) ∧ z and we obtain by virtue of *-modularity

(x ∨ y*) ∧ z 5 ((( y ∨ y*) ∧ z) ∨ z*) ∧ (x ∨ y*) ∧ z

5 ( y ∨ ( y* ∧ z) ∨ z*) ∧ (x ∨ y*) ∧ z

5 ( y ∨ z* ∨ ( y* ∧ z)) ∧ (x ∨ y*) ∧ z

5 (((x ∨ x*) ∧ ( y ∨ z*)) ∨ ( y* ∧ z)) ∧ (x ∨ y*) ∧ z

5 (x ∨ (x* ∧ ( y ∨ z*)) ∨ ( y* ∧ z)) ∧ (x ∨ y*) ∧ z

5 ((x ∨ ( y* ∧ z)) ∨ (x ∨ ( y* ∧ z))*) ∧ ((x ∨ y*) ∧ z)

5 (x ∨ ( y* ∧ z)) ∨ ((x ∨ ( y* ∧ z))* ∧ ((x ∨ y*) ∧ z))

5 x ∨ ( y* ∧ z) ∨ (( y* ∨ x) ∧ x* ∧ z ∧ ( y ∨ z*))

5 x ∨ ( y* ∧ z) ∨ (( y* ∨ (x ∧ x*)) ∧ z ∧ ( y ∨ z*))

5 x ∨ ( y* ∧ z) ∨ ( y* ∧ z ∧ ( y ∨ z*)) 5 x ∨ ( y* ∧ z)



1022 Dorninger, Länger, and Maczyński

Conversely, let us assume that (SM) holds. If x # y, then x # x # y, which
together with x # x ∨ x* implies (x ∨ x*) ∧ y 5 x ∨ (x* ∧ y). n

Remark 3.1. If a lattice with an involutory antiautomorphism * is *-
modular, it must not contain a sublattice isomorphic to the lattice illustrated
in Fig. 4, because from a $ b we could infer a 5 a ∧ (a* ∨ b) 5 (a ∧ a*)
∨ b 5 b.

Now we can prove that the associativity of the operation 1 within a
GBQR (R, 1, ?) has the following consequence:

Theorem 3.1. Assume (A2). If 1 is associative, then the lattice L(R)
corresponding to a GBQR (R, 1, ?) is *-modular. Moreover, it holds that

x # y # z implies (x ∨ y*) ∧ z 5 x ∨ ( y* ∧ z)

If R has characteristic 2, L(R) is orthomodular.

Proof. If x, y, z P R and x # y # z, then by Lemma 3.1, (i) and (ii),
we obtain

(x ∨ y*) ∧ z 5 (x* ∧ y)* ∧ z 5 (x 1 y)* ∧ z 5 (x 1 y) 1 z

5 x 1 ( y 1 z) 5 x 1 ( y* ∧ z) 5 x ∨ ( y* ∧ z)

Hence, according to Lemma 3.3, L(R) is *-modular. If R has characteristic
2, 0 5 x 1 x 5 x ∧ x* and 1 5 x ∨ x*, which means that * is an
orthocomplementation and (SM) becomes the orthomodular law. n

If R has characteristic 2 and 1 is associative, Fig. 4 (Remark 3.1) shows
that L(R) has to be orthomodular, and, according to Lemma 3.2(iv), Figs. 2
and 3 explain that L(R) has to be a Boolean algebra if 1 5 11. [Using the
notation introduced in Lemma 3.2(iv), a 11 b 5 (a ∧ b*) ∨ (a* ∧ b) 5
z.] The last result has also been obtained (in greater generality) in ref. 7,
Theorem 4.3.

Now we prove that under the assumptions (A1) and (A2) the last result
even holds for an arbitrary operation 1.

Fig. 4.



Lattice Properties of Ring-like Quantum Logics 1023

Theorem 3.2. Let (R, 1, ?) be a GBQR of characteristic 2 such that
(A1) and (A2) hold. If 1 is associative, then R is a Boolean ring and 1 5
11 5 12.

Proof. According to Theorem 3.1, L(R) is orthomodular. As shown in
ref. 3, there exist exactly six (not necessarily commutative) polynomials x
1 y over (R, %, ?) in x, y and the (only) constant 1 such that 1 coincides
with the symmetric difference if L(R) is a Boolean algebra; according to ref.
3, two of these extensions are commutative, namely 11 and 12. Hence,
because of assumption (A1), 1 has to be either 11 or 12. As shown in ref.
7, associativity of 11 or of 12 implies 11 5 12 [7, Lemma 4.1] and that
L(R) is a distributive lattice [7, Theorem 4.3]. Hence L(R) is a Boolean
algebra, which corresponds to a Boolean ring. n

Remark 3.2. It can be shown that most of the results of this paper
referring to bounded lattices with an involutory antiautomorphism remain
valid if one does not require the lattices to be bounded.

4. INTERPRETATION OF THE OBTAINED RESULTS WITHIN
QUANTUM LOGICS

As shown in ref. 7, a quantum logic can be defined as the algebraic
structure related to a system of homomorphisms induced by Mackey’s proba-
bility function.

The Mackey probability function p(A, a, E ) corresponds to the system
of observables A P O and states a P S for a fixed physical system and is
defined as the probability that a measurement of A in the state a will lead
to a value in a Borel set E P B(R). In this approach, the quantum logic
corresponding to this physical system can be interpreted as a generalized
Boolean quasiring (R, 1, ?), where R is the set of experimental propositions
defined by

R :5 {[(A, E )].A P O, E P B(R)}

with

[(A, E )] :5 {(B, F ).B P O, F P B(R),

∀a P S: p(B, a, F ) 5 p(A, a, E )}

In the present paper we have investigated the properties of (R, 1, ?). The
operation of multiplication ? can be defined as the unique extension of the
classical “and”-operation, and its properties preserve the classical properties,
as seen from axioms (3)–(7). On the other hand, the operation p 1 q has
the properties of the classical “exclusive or”-operation ( p or q, but not both)
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only if (R, 1, ?) is a Boolean ring. In general, 1 can be completely arbitrary
in the domain R \{0, 1}.

Since we would like to preserve some important properties of the classi-
cal “exclusive or”-operation also in the general case, we accept some restric-
tions on the arbitrariness of 1. A first restriction is assumption (A1) stating
that x 1 y should be expressible as a polynomial in x and y over (R, %, ?).
This means that the logical value of x 1 y can be computed from x and y
by a polynomial decision procedure using the fundamental operations % and
? (of which % is a partial operation applicable only to 1 and x, and ? is a
total operation). The second assumption (A2) is that the validity of x 11 y
implies the validity of x 1 y, and the validity of x 1 y implies the validity
of x 12 y, where (as described above) 11 and 12 correspond to two possible
expressions of classical “exclusive or” connected by the fundamental logical
connectives “or,” “and,” and “not.” We can say that (A2) means that the
general “exclusive or” 1 interpolates between two classical possibilities for
“exclusive or,” namely 11 and 12. This means that if x 11 y is valid and
x 12 y is valid, then x 1 y must be also valid (otherwise we would obtain
a contradiction with the logical meaning of “exclusive or”). We see that (A2)
is even more fundamental than (A1), since (A1) has a formal proof-theoretic
character (a proof involving 1 can be replaced by a proof involving % and
? only).

If we accept (A2), or if we accept both (A1) and (A2), we can interpret
our main Theorems 3.1 and 3.2 in terms of quantum logics as follows:

Interpretation of Theorem 3.1. Assume that in the ring-like quantum
logic (R, 1, ?) the operation 1 (interpreted logically as “exclusive or”)
interpolates between 11 and 12 and is associative. Then the lattice of proposi-
tions corresponding to (R, 1, ?) is *-modular, where * is the operation defined
by a* 5 1 1 a. If in addition the axiom x 1 x 5 0 holds, then * is
an orthocomplementation and (R, 1, ?) is orthomodular. We can say that
orthomodularity follows from associativity of the “exclusive or”-operation.
However, note that there are nonassociative ring-like quantum logics which
are orthomodular (e.g., the Hilbert space logic).

Interpretation of Theorem 3.2. Assume that in the ring-like quantum
logic (R, 1, ?) the operation 1 is expressible by the fundamental operations
% and ?, and 1 interpolates between 11 and 12, and is associative. If in
addition the axiom x 1 x 5 0 holds in (R, 1, ?), then (R, 1, ?) is a Boolean
ring, i.e., the logic of propositions corresponding to (R, 1, ?) is classical.
Hence Theorem 3.2 can be interpreted as a characterization of classical logic
in the framework of general ring-like quantum logics. In particular, if our
ring-like quantum logic is nonassociative, then it is not classical. This means
that if in the system of propositions corresponding to a physical system there
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are three propositions a, b, c such that (a 1 b) 1 c Þ a 1 (b 1 c), then
the logic is nonclassical. To see that (a 1 b) 1 c Þ a 1 (b 1 c), it is
sufficient to indicate a state a P S such that for the probability pa of the
respective propositions in state a we obtain

pa((a 1 b) 1 c) Þ pa(a 1 (b 1 c))

where, for a 5 [(A, E )] P R, pa(a) is defined as pa(a) :5 p(A, a, E ). If we
had an apparatus to measure a 1 b given a and b in the state a P S, we
could easily determine pa(a 1 b), as well as pa((a 1 b) 1 c) and pa(a 1
(b 1 c)). If these latter probabilities are not equal, the logic (and consequently
the corresponding physical system) is not classical.

Note that a 1 b represents the exclusive “a or b,” which means classically
“a or b, but not both.” However, the equivalence between a 1 b and “a or
b, but not both” is valid only in classical logic, so that the apparatus for
measuring a 1 b has to be constructed differently than in the classical case.
It is an open experimental problem to construct such an apparatus. If we
would have such an apparatus, the verification of nonclassicality of a physical
system would be much simpler than observing the standard violation of the
distributive law (e.g., for the momentum and position observables) which
involves two logical connectives “or” and “and” instead of a single 1 in our
case. Observe that our criterion for classicality generalizes a criterion proposed
in ref. 8, where the distributivity of a quasi-Boolean ring (which is a special
case of our generalized Boolean quasiring, as mentioned in the introduction)
is shown to be equivalent to the group structure of (R, 1) (hence in particular
1 must be associative). The criterion in ref. 8 follows directly from our
Theorem 3.2.
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Diss. TU Wien, 1998.
4. D. Dorninger, Sublogics of ring-like quantum logics, Tatra Mt. Math. Publ. 15 (1998), 75–83.



1026 Dorninger, Länger, and Maczyński
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7. D. Dorninger, H. Länger, and M. Maczyński, On ring-like structures induced by Mackey’s
probability function, Rep. Math. Phys. 43 (1999), 499–515.

8. C. Luo and X. Ma, On Stone theorem for de Morgan algebra, J. Fuzzy Math. 5 (1997),
543–551.


